
The Law and Computers

by

B. C. BROSNAHAN

PREFACE

The following article is based on a year's research by the. writer on
this topic in 1969. It is not intended to be comprehensive, but on the
other hand detail has not been avoided. The writer has tried not to
assume any great knowledge of the subject on the part of the reader.
The article is intended for lawyers and law students who might know
little or nothing about computers.

I.···GENERAL INTRODUCTION

The heading "The Law and Computers" might awake in the minds
of some the idea that this article will discuss the prospects of a com,­
puter conducting the trials of criminals, or deciding disputes pre­
sented to it. With this idea, there is probably also the 'assumption
that some day a computer will be able to perform both tasks with
a certain and all-pervasive knowledge of the law, and a wisdom
beyond that of mete humans. However, this would be a misconception
of the article's subject matter; and it maybe said, too', that the prospects
mentioned above are real only in science fiction.

A computer is only an electronic device, consisting of a highly
complex combination of electrical circuits and' components whose
magnetic state caD. be altered. The computer's peculiarity lies ·in the
fact that a pattern of electrical activity can be· set up in its circuits to
produce an end ·result, and that the particular pattern of activity can
be specified at will. There must be someone to set up a pattern of
activity initially; otherwise it will sit there, a useless maze of 'circuits,
doing nothiilg even though the power is on.

The person who writes the instructions determining' the particular
pattern of electrical activity that is to occur in the computet is called

1

2 Auckland University Law Review

a. "programmer". The set of instructions given to a computer which"
together, are sufficient to make it perform a certain operation, is
called a "program"; this word is not to be confused with the word
"programme". The computer is confined to the pattern created by
the programmer. For example, the ·computer cannot of itself decide
that it is required by the sense of the program to perform an addition,
if the program only makes provision for subtractions to be performed.
Therefore, any error or lack of foresight on the programmer's part
will cause the. computer to produce an incorrect result. In fact it can
be said with justification that a computer is only as clever or as stupid
as its programmer.

Now, if a computer is strictly confined within the logic of the
program it is executing ("to execute" a program means in computing
language "to perform" it, or "to carry it out"), then, no matter how
many contingencies the program may be designed to cope with, a
computer can never outdo humans and perform activities that cannot
be analysed into logical patterns. Thus it would seem that the judicial
function will remain the prerogative of human beings; for it would
not be feasible to program a computer to evaluate the truthfulness of
a witness's testimony, or take into account policy considerations in
its decision, or exercise a power of discretion.

Nor is it envisaged that, some day, it will be possible for a person
to go into a Government agency and request by means of a device
linked into a centralised computer, the, computer's opinion on his
latest legal problem. For similar reasons to those given in the para­
graph above, it would seem to be impossible to program the com­
puter to isolate the issues in the problem confronting it.

It would appear, then, that the courts and practising lawyers are
safe from the encroachments of the computer.

But what· if it is envisaged .that the person would request from the
computer not an opinion, but merely information on the law bearing
on his particular problem? This would definitely be possible. The
computer could serve as a very useful device for the retrieval of in­
formation from legal. documents such as statutes and the law reports.
This operation is termed "data retrieval".

The operation the computer would perform in data retrieval would
have certain similarities to that performed by a librarian when she
sets out to find a book that has been requested. If someone were to
request, for instance, a book on geology written by I. M. Hardistone
(fictitious name), it could be expected that the librarian would under­
stand the· term "geology". But .her understanding of the term would
not be necessary for her to find the book, nor would she even have (0

know that I. M. Hardistone was an author's name. For her to be able
to find the book, it would be sufficient· if she knew

The Law and Computers 3

(a) that she has to look in an index for a word with the same letters,
in the same order, as in "geology" ;

(b) that she has to check beside each occurrence of that word in
the index for the group of letters that make up "I. M. Hardi­
stone"; and

(c) that she has to use a code given in the index to locate the book
in the library.

The fact that the human librarian does understand what she is about
enables her to be of help to inquirers, and so we normally ensure that
our librarians are fairly well educated. However, when a computer
performing data retrieval acts on principles very similar to those
followed by a librarian, it does so in a purely mechanical way. In fact,
when we say that we made a request to the computer for information,
and it duly gave us the information required, we are really quite
mistaken if we regarded it as understanding us and giving us what
seemed to it to be a sensible reply-that would be to speak of it in
human terms.

A purely mechanistic description of its operations is all that is
needed to explain how it acted. The person's request would trigger
electronic switches, and the specific headings (in electro~magnetic

patterns) on which data is required would be compared with electro­
magnetic patterns in the computer's data banks, such as disks and
tapes. Whenever this physical comparison of magnetic pattern with
magnetic pattern revealed that both were identical, further electronic
switches would be triggered and that piece of data, along with its
context, would be transmitted to the printer from the data bank.
The printer, acting on the electrical impulses received, would select
the correct lettering and print out the retrieved data.

It is from the aspect of data retrieval that this article will examine
the uses of computers in the law.

II. THE PROBLEM CREATED BY THE SOURCES OF LAW

The employment of computers seems an obvious way of making the
administration of law and the use made of the sources of law more
effective than it is. To put this another way, if we take Roscoe Pound's
view of law, namely that "law is social engineering",1 the use of com­
puters could markedly improve the efficacy of this social engineering.

Just as Caligula, a Roman emperor, made law-making a play
exercise by putting his laws at the top of columns in the forum where

1 Pound, R., Philosophy ofLaw (1953) 47.

4 Auckland University Law Review

none could read them, so too might modern conditions have the same
effect. Because of the cumbersome nature of the vast mass of materials
from which the law has to be collated, the credibility of the present-day
legal system can but diminish if the law cannot be found.

"The main sources of law are statutes and the decisions of judges
as reported in the la\v reports; and all would agree that both are very
difficult to use. What is worse is that the situation is not improving.
Consider the situation New Zealand lawyers will be faced with in
2000 A.D. As well as having to try and find his way through the
hundreds of volumes of law reports and statutes already existing, a
lawyer'graduating now will also by then have to cope with (the follow­
ing figures are approximate)

120 volumes of Statutes (assuming there will continue to be only
four volumes per annum);

30 volumes of New Zealand Law Reports (one volume per annum);
30 volumes of'the Law Reports, Appeal Cases (one volume per

annum);
90 volumes of the Law Reports, Queen's Bench Division (three

volumes per annum) ;
JO volumes of the Law Reports, Chancery Division (one volume

per annum);
30 volumes of the Law Reports, Probate Division (one volume per

annum);
30 volumes. of Volume 1, Weekly Law Reports, which is an official

Law Report;
~ Numerous volumes of the various unofficial English Law reports;
120 volumes of the Commonwealth Law Reports (three volumes per

annum);
160 volumes of the Dominion Law Reports (four volumes per

annum).

The first seven above are particularly relevant to the needs of the
New Zealand lawyer. In our courts probably as many English cases
as New Zealand ones are cited. The last two, the Commonwealth Law
Reports and the pominion Law Reports, are little used because the
burden is great enough already. Moreover, in addition to the above,
there will be several hundred volumes of Australian State Reports.

"The, tremendous rate ,at which legislation is being produced now
is 'a relatively modern development, and the systematic reporting of
c~~es was only really under way by the nliddle of last century. Yet,
while, it is true that nine-tenths of human knowledge has undergone
radicalchange since 1900, the law has·not yet developed any effective
tools for coping with the information explosion in the sources of law.

The Law and Computers 5

Indexes and other old-fashioned devices can·· never efficiently classify
the law because penetration in any great depth into the subject matter
of the materials is never really achieved. Moreover they are always
out of date.

How can a computer help? The human brain has two important
disadvantages. First, it has an inefficient memory system that allows
only limited data to be ready for immediate recall without recourse
to prompters. Secondly, the electrical impulses in the brain m9ve
quite slowly through the nerves. ·For certain applications, the com­
puter can be regarded as being an artificial appendage of the human
brain that overcomes the latter's disadvantages. It can store enormous
amounts of data on disks and tapes, which it can quickly recover on
request. Moreover, the electrical current travels in its circuits at. the
speed of light, i.e. 186,000 miles per second, as ag.ainst only a few
feet per second in the brain.

Obviously the incr~ased speed of performance would be fantastic.
For example, a simple subtraction that would take, a person, say, fiv~

seconds, would be done by the IBM 1130 computer.in twelve micro
seconds (or twelve millionths of a second). It is the fact that i~ can
work at such a speed that enables it to cope with its large data banks.

A project in the United States provides a good·illustration of the
way computers are already helping. In that project, all the Pennsyl­
vanian' Statutes have been stored in computer ·data banks, and con­
siderable success is being attained in the retrieval of the provisions in
statutes relevant to a particular question. Its use in this field would be
of great help to the practising lawyer.

However, in his research last year, the writer concentrated on case
law rather than statute law; though this is of little moment, as ~on­

elusions reached for one are by and large applicable to the other.
But it is important that the mass of case law should be made more
manageable.

With the development of organised reporting of cases last century,
the doctrine of stare decisis took firm root and flourished. The key
reasons for the existence of the doctrine, it may be said, are that the
more heads that consider a problem, the better the solution is likely
to be, and that consistency is of the essence of justice. But if this
doctrine is to remain workable, and if the practice of consulting
"persuasive" authorities is to be encouraged, then it must be practical
for lawyers and courts to seek out the relevant earlier decisions. That
they should do so will only be practical and feasible if the earlier
decisions are readily accessible.

At present, it would be fair comment to say that the doctrine has
lost its classical meaning, and is rapidly coming to mean that, of the
cases that are theoretically binding on a court, only those cases that

6 Auckland University Law Review

happen to be found are in fact binding on that court. The fact that the
doctrine is having to accommodate a large element of chance could
well bring it into complete disrepute.

III. THE COMPUTER ITSELF

So far the writer has tried to outline and delimit some of the possible
ways computers could be used in relation to the law, and the problems
they could rectify. It is now proposed to discuss the computer itself,
as it is hoped that the discussion will give a better idea of the capa­
bilities of computers.

The particular computer the writer worked with was called the
IBM 1130. It is a moderately sized machine, but has the disadvantage
of lacking very extensive data storage facilities. The essential feature
it has in common with most other computers is that it has components
that represent, or symbolise, numbers in binary notation.

Before it is explained how this representation of numbers is done,
the term "binary notation" might require clarification. The way in
which we ordinarily represent numbers, Le. the ordinary notation for
'numbers, is called decimal notation: for example, two hundred and
fifty written as '250' would be said to be written- in decimal notation.
We could indicate that '250' is -a number in decimal ,notation by
writing it as '25010', the word description for which is 'two hundred
and fifty to the base ten'.

Decimal notation means that each digit in '250', i.e. '2', '5' and '0',
really represents a value multiplied by a power of ten. The power is
'0' for the right-most digit in a number, and increases by one as we
move each place to the left: for example, in '12980010' the digit '9'
is in the fourth place from the right and therefore represents 9 X 103

or 9000. So, in '250', '0' represents 0 multiplied by 10°, '5' represents
5 multiplied by 101, and '2' represents 2- multiplied by 102• In
mathematical form, this is:

25010 = 2 X 102 + 5 X 101 + 0 X 10°
- - -

(But 102 = 100, 101 = 10, and 10° = 0)
:. 25010 = 200 + 50 + 0

=25010•

It is to be noted how the numbers underlined in the first line are
brought together in '250' to represent the whole value of two hundred
and fifty.

It is called decimal notation because in each digit place in a number
tbere are ten possible values for each place, namely 0,1,2,3,4,5,6,7,8,9.

The Law and Computers 7

Thus we could take the equation:

ZlO = W X 102 + X X 101 + Y X 10°,

and if we were to let the variables W, X, and Y be any of those ten
values, Z could be any number up to 1000. For example,

let W be '4', X be '9', and Y be '2'
then Z10 = 4 X 102 + 9 X 101 +2 x 10°

= 492 10

In binary notation, however, only two values for every digit place
are allowed, namely '0' and '1'. Because there are only two values
and not ten, we multiply the value in each digit place by a power of
2, instead of by a power of 10. That· this must be so can be seen from
the following examples.

Eleven in binary notation is '1011', and to indicate that '1011' does
not represent one thousand and eleven, but eleven, we could write it
as '1011 2' (Le. eleven to the base two). In decimal notation eleven is
'11 10', therefore

11 10 = 1011 2•

This equality can be demonstrated mathematically:

1011 2 = 1 X 23 + 0 X 22 + 1 X 2 1 + 1 X 2°- - -
(but 23 = 8, 22 = 4, 21 = 2, and 2 0 = 1)
... 1011 2 = 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1

=8+0+2+1
= 1110·

It is noticed how in the case of binary notation also the underlined
values in the first line are brought together in '1011' to represent the
number eleven.

Again '250 10' would be written in binary notation as

111110102 •

'111110102' is readily enough obtained from '250 10'. Ascertain the
highest power of two that will divide into '25010' once, and write a
'1' (this '1' will be the left-most digit in the binary number). Ascertain
the next highest power of two that will divide into the remainder from
the previous division. If that power is immediately below the previous
power, i.e. is less than it by no more than one, then write '1' to the
immediate right of the first '1' we wrote; otherwise write '0' for each
of the intervening powers that do not occur and then' l' for the power
of '2' that does. This process is continued until there is no remainder
left, or it is one; if the remainder is one, write '1' (it will be the right­
most digit). Mathematically, the process is as follows (great detail
deliberate) :

8 Auckland University Law Review

25010 = 128 10 + 12210

= 128 10, + (6410 + 58 10)

= 128 10 + 64 10 + (32 10 + 26 10)

= 128 10 + 6410 + 3210 + (16 10 + 1010)

= 128 10 +6410 + 3210 .+ 16 10 + 810 + 2 10

= 1 X 2 7 + 1 X 2 6 + 1 x25 + 1 X 24 + 1 X 23 + 0 X 22

~ - ~ - ~

+ 1 X 21 + 0 x 2 0
....

(take the 'l's'and 'O's'underlined, and bring them together)
= 111110102•

Because of the nature of its components, the computer must repre­
sentnumbers in binary notation. For example, the IBM 1130 computer,
in the memory area used during processing and called "core-storage",
uses tiny metallic cores or rings that can hold a magnetic state to
symbolise whatever is stored there. By altering the direction of flow
of an electric current, these cores can be magnetised in two directions,
clockwise and anti-clockwise. Since only two physical states are
possible, it can be specified that each core is to symbolise the two
digits '0' and '1', as shown in Figure 1.

@
I

@

0 1
I

Figure 1. Magnetic symbols for binary symbols '0' and '1'.

Each core iscaIIed a "bit", and these are stacked several high to form
a' composite unit called a "word". It can be seen therefore that each
word is suitable only for symbolising binary numbers, since each bit
can only represent the two digits '0' and '1'. Each bit making up a
word would represent one digit place ofthe binary number; in Figure 2,
a ten-bit word symbolises two hundred and fifty in binary notation,
i.e. 111110102• The arrows indicate the direction of the magnetic
charge.

The Law and Computers 9

o 0 1 1 1 1 1 o 1 0<
Figure 2. Two hundred and fifty symbolised by a ten-bit word.

In the IBM 1130, it takes sixteen bits to constitute one "word" of
core~storage. It should be noted here also that the principles described
above for core-storage apply as well to devices used by binary co~­

puters for their permanent memory, namely magnetic tapes, disks
and drums.

However, the computer is not confined to numbers so that it can
only be used as a complicated adding machine. It can symbolize the
alphabet, and it does so by means of binary numbers which serve as a
code for the letters of the alphabet. The magnetic words symbolise
these binary numbers in the computer by means .of bit patterns, just
as they do for other numbers. But on anyone occasion the computer
knows when it is dealing with these binary numbers, not as numbers,
but as a code for the letters of the alphabet, because it is given an
instruction to that effect.

Table 1 is an illustration of a binary code in a six-bit word for the

Alphabet
(space)

A
B
C
D
E
F
G
H
I
J
K
L
M

Binary Code
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
100001
100010
100011
100100

Alphabet
N
o
p

Q
R
S
T
U
V
W
X
y
Z

BinarY'Code
100101
100110
100111
101000
101001
110010
110011
110100
110101
110110
110111
111000
111001

Table 1. A six-bit binary code for the alphabet.

10 Auckland University Law Review

letters of the alphabet. The space which occurs between words, i.e.
ordinary words, is included as a letter of the alphabet.

Using such a code we can then construct symbols for strings of
characters which form English words. It is possible to form symbols
for sentences, paragraphs, or even books by using a binary code. By
adding a few binary codes to those in Table 1 to symbolise commas,
etc., punctuation can also be included.

To illustrate this six-bit binary code, T. H. Crowley2 gives the lines

"How do I love thee?
Let me count the ways."

from one of E. Browning's sonnets in the form shown in Figure 3.
In Figure 3 the meaning is just the same as the English original, though
any warmth is banished.

Line 1 011000 100110 110110 010000 010100 100110
010000 011001 010000 100011 100110 110101
010101 010000 110011 011000 010101 010101 001111

Line 2 100011 010101 110011 010000 100100 110111
010000 010011 100110 110100 100101 110011
010000 110011 011000 010101 010000 110110
01001 111000 110010 011011

The two underlined above are punctuation:

001111 = '1' (question mark)
011011 = '." (full stop).

Figure 3. Two lines of a sonnet in a computer language.

The IBM 1130 uses an eight-bit code for the letters of the alphabet
and other special characters; and as it has a sixteen~bit word, two
characters can be packed into each word if it is desired. So, assuming
that in Figure 3 an eight-bit code had been used, either forty-one or
twenty-one words would be needed to symbolise or "store" the two
lines in memory, depending on whether there were one or two characters
per word.

In a computer's core-storage memory area, therefore, the two lines
above would become physical symbols; i.e. groups of cores magnetised
in certain directions. However, core-storage would not provide a
permanent memory or record of these two lines. It is usually only
large enough for the storage of the program to be executed (i.e. carried
out) and any data that might be needed for processing in the course

2 Crowley, T. H., Understanding Computers (1967) 25-26.

The Law and Computers 11

of the program's operation. It "forgets" everything stored there as
soon as another program is executed. In the IBM 1130, core-storage
would probably not be larger than 8,000 words. For permanent storage
of the two lines of poetry, they would have to be stored on devices
such as magnetic disks or tapes; these latter serve as the permanent
memory of a computer. Obviously permanent storage of data would be
essential for any data retrieval system.

In the IBM 1130 that the writer used there is only one disk on line
ata time for permanent storage; so it was not a very suitable machine
for, in any data retrieval system, large banks of data are required. The
disk itself looks like an L.P. record, and uses small magnetic particles
on its surface for bits instead of the ferro-magnetic rings used in
core-storage.

Table 2 gives the amount of permanent storage available on the
various permanent..;storage ·devices, and the length of time it would
take to have access, Le. store in or retrieve from, any location in these
types of memory.

Memory Type Amount of Storage Access Time

Disk 200-350 pages of data Varies: 2 millionths to half
a second.

Tape 7-8 complete 1,000 page Varies: 10 millionths of a
second to 10 seconds

Drum Slightly larger than that Varies: 2 millionths to 30
given for the tape thousandths ofa second.

Table 2. Volume and access-time of memory devices.

The reason for the greater variation in access time for the tape is that
each time it is searched it has to be unwound and re~wound.

However, before we could permanently store the two lines of poetry
in Figure 3, we have to first get them into the computer. The process
of getting data into the computer is called "input" of data. For input
into the IBM 1130, the data has to be punched on to cards (or for
some types of data, paper tape is suitable). Each character has a
specific punch arrangement that symbolises it. The punch machine has
a keyboard like that of an ordinary typewriter, but when a key is
pressed the machine punches holes in one column of a card to form the
punch code for the character designated by that key. Each card has a

12 Auckland University Law Review

maximum of eighty columns that can be used. Just over forty columns
'would be used to represent the two lines of poetry. It is to be noted
that the punch machine is not linked to the computer. Also it is a
weak point.in the use of a computer because it can be operated only
at manual speed, which would be that of the particular typist using it.

Another piece of equipment, the card reader, which is linked to the
computer, reads the data on the punched cards into the computer at
speeds as fast as 1,000 cards per minute, i.e. 80,000 columns of punches
per minute.. The IBM 1130 card reader can read up to 300 cards per
minute. The latter uses photo-electric cells which emit an electrical
impulse whenever a punched hole is encountered. As the data is
initially stored in core-storage, the electrical impulses emitted are
transmitted to the word of core-storage which is to symbolise the
character represented by the punched holes. Which bits in a word
are magnetised in an anticlockwise direction, and which are not,
depends on the pattern of impulses transmitted from the card reader.

To store the two lines permanently, the computer would need
further instructions to the effect that it has to transmit the symbols
in core-storage to the disk, and then move a protective "barrier" to
prevent them being over-written with data later transmitted to the
disk. The lines would remain there until the computer was instructed
to de~ete them.

This idea of "transmission" of symbols might need clarification.
It was said above that the bits in a word, when magnetised in particular
directions during input, together constituted the physical symbol of a
character. These bits are used to generate pulses of electrical current
that tr(l.vel in a direction corresponding to the way each bit is mag­
netised.. These. pulses, travelling at a 1,000 feet in 1,000,000th of a
second, cause the bits of a word on the disk to be. magnetised in
directions that are the same as those of the bits in core-storage which
generated the pulses. Thus the transmission of a symbol means that
a symbol at one location is used to generate the same symbol at
another location, and that the symbol in the first location is not in
fa'ctshifted at all.

Data retrieved from a computer's memory, or the results obtained
from an operation that the computer has just performed, is called the
"output". In the IBM 1130 computing system, a very fast printer
which can print 320 lines per minute is used to produce the output.
It is essential that the printer be extremely fast, because the faster
the printer the faster are the speeds at which the computer can process.
Itusually happens that the computer has to pause in its operations while
the printer catches up.

To illustrate the printer's speed, the printer gave a print..;out of
some programmes the writer had written, which took a typist 10-14

The Law and Computers 13

hours to punch out on cards, in less than ten minutes. The printer
attains these speeds by printing whole lines at a time. To do this, the
printer is geared so that the particular characters whose symbols were
transmitted to the printer for output are arranged side by side in the
consecutive order in which their symbols were received. When a
special control character which acts like a typewriter carriage-return
is received and indicates that the line is complete, the whole line is
printed in one action. Control characters are specified in the course
of the actual programming, and the use of them enables the spacing
to be varied, or indentations to be made for the start of a new para­
graph, ,etc.

IV. PROGRAMMING

The last section described in outline how a computer works. It is
proposed now to explain briefly how a computer isprogiammed, i.e.
instructed what to do. It is thought that this will help the reader to
understand how the computer is adapted to suit the particular pro­
grammer's wishes.

The point has been made above that a computer is useless without
programs, i.e. a set of detailed instructions to be executed by the
computer in sequence. It is the programmer's task to analyse the
work it is desired to have done by a computer, and then to draw up a
set of instructions sufficient to make it carry out that work. To' write
a good program, the programmer must first acquire a 'deep under­
standing of the problem. In passing, it would seem therefore that the
person most suited to adapt computers to solve the problems pre­
sented by the sources of law would be a programmer' with a legal
training.

In its most elementary form a program consists of a list of binary
numbers. Each binary number is a code, firstly, for an operation the
computer is to perform, and secondly, for where it is to find the data
in core-storage to perform the operation with. The binary codes would
tell it, for example, when to read a card, where to store the data read
in from a card, or else what switches to set/to carry out some pro­
cessing.

To illustrate this, if we were using a sixteen-bit word, we could use
the first five bits to form the code that specifies the operatjon to be
performed. The rest of the bits could be used to represent the number
of the word, or "location" as it is often called, in core-storage to or
from which symbol transmission is to take :place.For instance, we
could let '01001 'be the code for the instruction "Read a card", in which
case the binary code in Figure 4 would·· show the actual instruction
that could be framed.

14 Auckland University Law Review

I [

0 100 1 0000001001
I

READ location, i.e. word
a card and transmit 9

data into in core-storage

Figure 4. An instruction in machine language and its explana­
tion.

That the last eleven bits would in fact represent location 9 is shown
mathematically as follows:

00000001001 2 is the same as 1001 2

1001 2 = 1 X 2 3 + 0 X 22 -t- 0 x 2 1 + 1 x 2 0

=8+0+0+1
= 9 10 •

All the instructions that a computer actually executes are in fact
in the form of binary codes somewhat similar in principle to the
illustration given above. They are called "machine language". If we
assumed a machine language such as that in Table 3, we could write
a program such as that in Table 4. The X's in Table 3 fill the bits
which would make up the binary number for a location in core-storage.

Binary Code Description

11001XXXXXXXXXXX An "ADD" instruction
OlOOIXXXXXXXXXXX A "READ" instruction
OlOlOXXXXXXXXXXX A "WRITE" instruction
OlOllXXXXXXXXXXX A "STORE" instruction

Table 3. A machine language for illustration purposes.

The programme in Table 4 will add two numbers read into core­
storage, and will print out the sum. The "accumulator" mentioned in
the explanation in Table 4 is the part of the computer where adding,
etc., are done.

Instruction

0100100000001001
0100100000001010
1100100000001001

1100100000001010

0101100000001011
0101000000001011

The Law and Computers

Explanation

READ a number into location 9
READ a number into location 10
ADD number in location 9 into accumu­

lator
ADD number in location 10 into accumu­

lator
STORE sum in location 11
WRITE sum from location 11

15

Table 4. Program for adding two numbers

The programmed instructions, stored in core-storage in the form
of these binary codes, are transmitted to a part of the computer called
"control". The control unit is analogous to a telephone operator in a
manual exchange-it sets switches, selects circuits, and controls the
processing generally. Since the control unit is an electrical circuit
similar to all others in the computer, it too must receive the data
transmitted to it in the form of electrical pulses (cf. "symbol trans­
mission" discussed above in the previous section). The control unit
has been designed so that it reacts in a pre-determined way to the
particular pattern of pulses received; in this way the necessary switches
are set so that the specified instruction can be performed. Thus, the
binary instruction in Figure 4, on transmission to the control unit,
would cause:

1. The circuit linking the card reader to core~storage to close for
symbol transmission to location nine;

2. the card reader to read a card.

One could then say that "0100100000001001" had been executed. The'
control unit acts in response only to the codes it is designed fOf, i.e.
the legitimate codes.

Equally important is the fact that the control unit incorporates an
instruction counter. The binary codes for instructions are stored in
consecutive order in core-storage. Let us suppose that the instructions
for the program in Table 4 are stored in locations one to six. How­
ever, the control unit, of itself, would have no way of knowing which
instruction to execute first, and which next. The instruction counter
serves this purpose.

When execution of a program begins, the instruction counter is
set to one, and the control unit goes to location one in core-storage
for its first instruction. On completing the first instruction, the instruc-

16 Auckland University Law Review

tion counter is set to t\VO, and the control unit goes to location two
for its next instruction, and'so on.

Turning to the instructions themselves again, the reader can probably
appreciate the feat of memory that would be required to remember
dozens of codes like those in Table 3, the high likelihood of error,
and the tediousness of having to frame programs in machine language.
It would be much easier if we could write instructions in familiar
language and notation.

A way to do this would be to set up a table of equivalences such as
those in Table 5, so that the programmer need only to write what is
on the left when he wishes to specify the equivalent instruction iIi
binary code on the right. 'N' in Table 5 is any location number the
programmer happens to specify (cf. the use of the 'X's').

Form' of instructions to be used by
the ·programmer

ADD N
READN
WRITEN
STORE N

EqUivalent instruction in
binary code

IIOOIXXXXXXXXXXX
OlOOIXXXXXXXXXXX
01 01OXXXXXXXXXXX
01011XXXXXXXXXXX

Table 5. A set of equivalences.

The instruction in the form on the right is solely for the benefit of
the programmer. In fact a programmer would not need to know any
of the instructions in machine language at all. When the computer has
read the punched cards for the instructions in Table 6 (Table 4· trans­
lated), it would execute a specially written translater program. This

Instructions in a computer user's
language

READ 9
READ 10
ADD 9
ADD 10
STORE 11
WRITE 11

Table 6. Using Table 5, a translated version of Table 4.

The Law and Computers 17

program would check the symbols from the instruction cards, and if
it "recognised" legitimate instructions, it would create a program
with equivalent instructions in binary codes. Thus the program the
computer would actually execute would still be one in machine
language, and only the computer \vould need to "know" machine
language programming.

There is an actual language in common usage quite similar to that
shown in Table 5, and illustrated in Table 6; it is called "assembly
language". The specially written program which converts· it into
machine language is called the "assembler". But it is a higher level,
or more abstracted language, because the programmer does not have
to specify the actuallocatiolls in core-storage to or from which symbol
transmission is to occur. When using the language in Table 5, it was
said that the programmer had to specify what 'N' was to be; and
this was done in Table 6. But, in assembly language, the programmer
only has to write a different variable whenever he wishes a different
location in core-storage to be used; the assembler is designed so that
it chooses the actual location to be used when it translates assembly
language into machine language. Table 7 illustrates this. 'Nl', 'N2'
and 'SUM' are the variables used.

Assembly language instructions

READ Nl
READ N2
ADD Nl
ADD N2
STORE SUM
WRITE SUM

Table 7. The program in Table 6 re-written in assembly language.

However, assembly language, although it has advantages of flexibility
for certain purposes, is also very tedious and difficult to use. As in the
use of machine language, programs written in assembly language are
very detailed and every step is precisely defined; so much so that
even a programmer can have difficulty following his own program.
Error detection can also be very difficult.

But advantage has been taken of the fact that the same clusters of
assembly language instructions re~occur whenever a similar operation
is being performed, so that even more abstracted· languages can be

18 Auckland University Law Review

written. In such languages one instruction is used to specify a whole
cluster of assembly language instructions; and the composition and
notation of their instruction make it easier to mentally picture the
operation the computer will. perform.

Even though an assembly language is inherently more efficient for
data handling, ease of programming makes a language such as
FORTRAN a more suitable choice for this study. The equivalent
of the assembly language program in Table 7 in a FORTRAN-like
language would be the instructions, or "statements" as they are often
called, in Table 8. FORTRAN IV statements themselves are not used
as too much extra and unnecessary explanation would be required to
explain further details.

Instructions, or "statements"

READ Nl, N2

SUM = Nl + N2

WRITE SUM

Table 8. Program in table written in a FORTRAN-like language.

Yet another program is used to translate the FORTRAN IV state­
ments into assembly language instructions. It is called the "compiler".
As in the case of assembly language, 'Nl', 'N2' and 'SUM' are variables
used to indicate that different locations in core-storage are to be used,
and the computer is left to select these different locations. Figure 5, 3

in diagramatic form, shows the complete process that occurs before
a program in machine language that the computer can execute is arrived
at. A program written in FORTRAN IV is called the "source program".

The IBM 1130 computer has the compiler and the assembler stored
in its memory on the disk. Whenever a source program is read into
its core-storage, the above programs are summoned in turn into
core.;storage for execution. Once the translation into the machine
language program is completed, that program can then be executed
immediately or, if required, be itself stored on· the disk to await a
summons into core-storage for execution on some future occasion.
The translation of the source program into a machine language
program is called "compilation".

3 Ibid., 94. A modified version is given here. This book is an excellent introduction
to computers.

The Law and Computers 19

I PROBLEM I)

I
PROGRAMMER "'" SOURCE

r PROGRAM

+
.J

ASSEMBLY TRAN~lATJON
ASSEMBLER LANGUAGE COMPILER,

PROGRAM "'

tTRANSLATION

MACHINE EXE~UTION
LANGUAGE COMPUTER "'" RESULTS
PROGRAM

, ,

+
DATA I

Figure 5. Diagrammatic representation of the preceding explanation.

It is hoped that the above discussion has brought out the respective
roles played by the programmer and the computer when any applica­
tion of the computer is being developed. It can probably be seen that
the real burden of adapting the computer to solve the problems created
by the sources of law would be on the programmer, and that the
computer would only be a willing horse.

V. OUTLINE OF THE WRITER'S RESEARCH

The writer decided to choose the topic "Law and Computers" as a
research subject for a seminar in 1969. There were two possible ways in
which the topic could have been tackled. The first would have been
to conduct a fairly academic study, i.e. confine any research to what
had been written on the subject, and to then give an account of what
had been achieved up to date. The other would have been to learn
about computers and how to use them, and then to discover, by
actually attempting to program a data retrieval system, the difficulties
and problems that would have to be overcome.

The writer was discouraged from the first option because, when
he started, he did not know of any work being done elsewhere.·
Moreover, a natural curiosity about computers themselves prompted
the latter course.

So, the first thing to do was to learn how to program. It did not take
long to grasp the essential principles of FORTRAN IV programming,

4 As it turned out, a lot ofwork has been done overseas. However, the writer does not
know of any research done in New Zealand to date.

20 Auckland University La~v Review

and the writer was directed to much material of great assistance. 5

He ·,rannumerous -programs through the computer, incorporating
more and more of the FORTRAN·IVstatements as he learnt them.
-More .seems to have been learnt about the statements from the
"bungles" made, and the arduous task of working out what had gone
wrong, than was ever learnt. from bald explanations of them in a
textbook. A useful by~product of several months of practising pro­
gramming, whenever time could be found for· it, was that several false
notions.ofhow data could be handled by the computer were destroyed.

Time had to be spent, too, learning how to use the disk. The disk
has a set'of instructions for its use quite apart from those that must
be learnt in order to use the computer.

Gradually it was realised that the computer could not be bent to
suit a specific problem, but that the problem had to be bent and mani­
pulated into a form the computer would -find acceptable. For one
thing, it might be easy to get the computer to store data on the disk,
but it has to be kept in mind how particular parts of that data are
to be found on fut.ureoccasions. The secret lies in organisation. A
piece .of unorganiseddata, e.g. several pages of written material,
would 'prove completely unsuitable for useful and efficient access
"later to its contents, if it were deposited as it stood on to the disk.

It was quickly apparent that a lot of work would be involved to
achieve anything worthwhile in the form of practical work in one-year.
It was found necessary to limit severely time spent reading about
other projects at this stage.

However, some interesting· pamphlets about an international con­
ference of jurists in July 1967 at Geneva, at which the question of
using computers within the law seems to have featured prominently,
were brought to the writer's attention later in the year. They gave some
insight into the surprising amount of research already under way in
this field, and gave a list of centres overseas where it is being done.
!\. very useful article in which much of this research was mentioned
was that by Aviezri S. Fraenkel. 6 It appears that some projects are
dormant, ·that any systems working are still largely only tentative
schemes, and that the field is still wide open. However, the article does
~h9w that most of the main difficulties in developing a legal data
retrieval system have been averted to, even if not solved.

With' ~he help of the above materials it became clear that to carry

,5 McCracken, P. D., A Guide to FORTRAN IV PROGRAMMING.
I.B.M. Systems Reference Library:

I.B.M. 1130/1800 BASIC FORTRAN IV Language, File No. 1130/1800-25
Form C26-3715-2.
I.B.M. COlnputing System Users Guide, Manual No. C20-1690-0.
Robert K. Louden, Programming the IBM 1130 and 1800, Prentice-Hall.

6 Legal In/ormation Retrieval (1968) 9 Advances in Computers, ·113-178.

The Law and Computers 21

out an analysis of the subject matter of cases so that they could be
grouped under the appropriate heading in an index of legal classifica-

·tionswould be wholly impractical. To explain what is meant, when a
lawyer is using a traditional index to find cases on equitable easements,
he would first look for the legal classification REAL PROPERTY,
then EASEMENTS; and EASEMENTS would have the sub-headings
Legal and Equitable.

The reasons why such a procedure would be impractical are several.
Firstly, it would require the use of lawyers to analyse each case to
determine its classification. As such a method would be very time­
consuming, and as Jawyerswould command high wages, the' cost
'would be prohibitive. Secondly, such headings would not tell us
about many things that would have been discussed in the case. In
short, it is hard to compress several pages of a judge's decision into
a summary a paragraph in length, let alone a few words. Things such
as obiter dicta, etc., are not covered. It might be asked: 'what if the
analysis were comprehensive enough? But, 'again, the tremendous
effort required to do this to, say, a 1,000 cases, would bring us back
to the considerations again of time and cost.

Thirdly, the analysis of a case would depend very much on the
opinion of the lawyer doing it; and proof of this is,the amount ordis­
agreement that often 'arises as to what a case really decided. Moreover,
it is unavoidably rigid and presupposes that future lawyers would
regard the case in the same way as present-day lawyers do.

Finally, legal classifications ,vould be too general. An immense
number of cases would probably be produced if an inquirer were to
ask the computer for cases on "Equitable Easements". Since most of
them would probably be irrelevant, the whole purpose of a legal data
'retrieval system'would be defeated.

A method that has proved suitable is that known as KWIC, or the
,key-word-in-context method. Assuming that data banks had already
·been created, 'a 'search for relevant data is carried out by selecting a
small number of words which are then used to find all the cases which
contain them. The words selected are fed into the computer as data
for a request and search program. The citation of the cases which
contained the words are then printed out.

An excellent illustration of this system is a conlmercial project
operated in the United States by an organisation called "Automated
Law Searching". The following is a quotation explaining how their
system for searching statutes works: 7

"The user conducts a search by indicating to the computer those
words whose presence in .a section, in the relationship he specifies,

7 This is taken from advertising materialpublished by the Automated Law Searching
Co.

22 Auckland University Law Review

would probably signal its relevance to his problem. Here [an actual
example is referred to], in a search for sectionsdealing with the rights
of parents with respect to abandoned children up for· adoption, the
user specifies four concepts which he believed would be expressed in
any applicable statute.

The instructions are to find every section containing the word
CHILD or one of its synonyms, and ABANDON or one of its
grammatical variations. The computer is to search the Pennsylvania
statutes vocabulary listingS for these sections and store them. The
computer is then told to find every section containing PARENT or
PARENTS and ADOPT or one of its variations. These sections are
to be identified and stored. The computer is then told to compare the
contents of the two groups and print only those sections which appear
in both [groups]. The final result is that only those sections will be
printed which contain a word or phrase expressive of each of the
four concepts."

Many variations of the KWIC method are possible, but the essential
idea behind all is the same. It is that the very words of any written
material should be used as the content of any index, as those words
can best serve as the keys to the written material's subject matter.
The context of the word in any material retrieved would reveal whether
the sense in which it was used in that particular context was relevant
or not.

The following is another way in which the writer feels computers
could help to tap the wealth of information in the law reports. It would
involve taking advantage of the doctrine of judicial precedent.

Since precedent is very important in the common law, earlier cases
are constantly being cited in later cases. As can be expected, the later
case would have dealt to some degree or at length with the same
subject matter as that dealt with in the earlier case. For this reason,
a useful technique often used to find out more information on a
problem is to look up cases in which a known case has been cited.
For example, if a lawyer has a problem that has flavours of Hedley
Byrne v. He/ler,9 much light would be shed on the problem before
:him if he could quickly obtain a run-down of the cases in which
Hedley Byrne's case was cited. This should not be unexpected, as
precedent does embody the commonsense principle that new situations
that arise are often to a large extent variations of situations that have
arisen before.

The computer would be a very efficient assistant here. What is pro-

8 The vocabulary contains all the words which can be legitimately specified in a
search out of all those that occur in the statutes, e.g. "the", "or", "which" are not
words that can be specified. Each word in the vocabulary has the citation of the
sections in which it appears stored with it.

9 Hedley Byrne & Co. Ltd. v. Heller & Partners Ltd. [1963] 2 All E.R. 575.

The Law and Computers 23

posed is that the computer would have on storage in its memory
banks distinct units of data, i.e. records, each of which would contain
the following:

1. The case citing;
2. the case cited;
3. how the cited case was treated;
4. from what aspect the cited case was discussed; and
5. what the citing case was about.

To enlarge on 3· above, a case cited does not generally emerge un­
affected by the experience. It can, for example, emerge approved, dis­
tinguished, overruled, doubted, questioned, or as an authority for a
principle.

Thus, when the computer is asked for the annotations of a particular
case, the five pieces of information above would be printed out for
each case found that cites the specified case.

VI. THE PROBLEMS OF A CASE LAW RETRIEVAL
SYSTEM

Most of the problems involved in organising case law data ,so that
it would be a suitable subject of an information retrieval system,
and so that there would be reasonable certainty of most of the relevant
information being retrieved, are faced by any system dealing with
language and written materials.

The basic cause of the problems is that, unfortunately, the computer
does not understand what is being fed into it, nor what it is doing.
It is simply a symbol storer, and works by the transmission of symbols.

A. The Problems

The problems are threefold: unsuitable words, grammatical variations
of words, and synonyms.

1. Unsuitable }vords
The bulk of a case is made up of words unsuitable for indexing.

The idea of an index is to have only those words in it that are "concept
storers", and it is pointless to include words that would never be
requested; for example, "of", "it", "they", "we", "a", "the", "was",
"were", and adverbs, connectives and conjunctions.

There is the danger, too, of repetitive indexing because a word can
re-occur many times in a case; for example, in a case on trusts the
word "beneficiary" or "trustee" would appear many times. Also,
some words are so general that they would occur in thousands of
cases; examples are "contract", "trust", "crime", "offence".

24 Auckland' University Law Review

How is the computer to be told
(a) not to index certain words on the ground that they are un­

important;
(b) to index each different word in a case once, and'not repetitively;
(c) not to index certain general words.

2. Grammatical variations

Most words have grammatical variations such as various verb
forms,and a noun form, e.g. abandon, abandons, abandoned, abandon­
ing, and abandonment. If a person were to specify the word "abandon- ~

ment" as being one of the' words relevant cases would be likely to
contain, how is the computer to be told that the words "abandons",
"abandoned", "abandoning", or simply "abandon" also embody the
same concept?

3. Synonyms

Most words have synonyms, and in some cases they are numerous;
for example, "automobile" has the synonyms "car", "motor-car",
"motor vehicle" and "vehicle". How is the computer to be told that
"motor-car" means the same thing as "automobile"?

Moreover, in some instances, words are synonyms when they are
in certain contexts, but not when they are in others. Consider, for
example, the underlined words in the following three sentences:

(a) There are specific legal requirements for the signing of wills.
(b) Two persons must witness the execution of a will.
(c) The execution of murderers has been abolished in New Zealand.

"Execution" in the senseit has in (b) is the synonym of "signing",
but not when it has the sense it has in (c). How is the computer
to be told, assuming that a way of telling it that certain words
are synonyms has been worked out, that "execution" is the
synonym of "signing" in some instances but not in others?

B. Possible Solutions to the Above Problems

1. Unsuitable words

(a) Unnecessary words

It would be possible to select, say, a hundred cases at random and
let the computer digest them, to build up a word frequency table. It
would probably be found that the words that occurred most often
would be those that it would be unnecessary to include in an index;
e.g. "it", "was", "were", etc. The programs for the input and digesting
of cases could then eliminate these words, and any other undesirables
that might be decided upon either a' priori or by experience.,

The Law and Computers 25.

(b) Repetition of words
This problem could easily enough be overcome. Some instructions

could be included in the input and digesting programmes to the effect
that a word is to be indexed on the first occasion only that it·is found
in a case, and is to be ignored on· subsequent occasions. Alternatively,
a counter could be incremented by one on each occasion the word is
encountered, and this number could be entered' after' the word in the
index. This number could be useful, because, if a key word occurred'
particularly frequently in a case, it would show that the chances of that
case being relevant would be pretty high.

(c) General }vords
General words would prove a little more awkward. How are the

words which are to be ignored for indexing purposes (cf. unnecessary
words above) to be selected? Words that are too general, unlike
unnecessary words, have meaningful content. Yet it is suggested that
they might have to be ignored on the ground that they occur much
too frequently. Perhaps a simple frequency test might be sufficient to
decide which words are not to be indexed.

On the other hand, it is felt that this is a problem better suited to
examination in the light of experience with an operating system.

2. Grammatical variations
This problem could be solved by using a bank of grammatical

variations of words. When a word is specified in a search request,
the computer could check this bank for its grammatical variations
(if any) and include these automatically as words to be searched for.

3. Synonyms

This problem would require somewhat more ingenuity in order to
alleviate the effects that flow from it. It would never be open to com­
plete solution because language is' a living thing and the nuances .of
meaning are enormous. However; law does have the advantage that
words are used precisely.

A "thesaurus" bank could be built up similar to the bank suggested
for grammatical variations above.. To illustrate how it would work,
if the word "child" were specified in a search request, the computer
would go to the thesaurus and would find there the synonyms "infant'"
and "minor". The computer would then include these two words in
the key words it would search for.

However in building the thesaurus it would be difficult not to over­
look that a word has synonyms, or to give only an incomplete .listing
of the possible synonyms.

To turn to the second aspect of the problem of synonyms; namely,
what to do about words that' are only sometimes synonyms. One

26 Auckland University Law Review

possible way to prevent irrelevant cases being retrieved because of this
lack of consistency in language might be to allow the inquirer to make
negative specifications of key words. Using the example above to
explain what is meant, the inquirer could specify "murderer" as a
key word that must not occur in any cases the computer retrieves.
In this way, a case using "execution" in the sense it has in sentence (c)
would not be retrieved if it also contained the word "murderer".
This would help to cut down the number of irrelevant retrievals.

VII. AN ATTEMPTED CASE LAW RETRIEVAL SYSTEM

As noted earlier, for the purposes of research for his seminar the
writer preferred to examine the problems involved in case law retrieval
by doing some actual practical work rather than by academic study.
As a result the work handed in for the seminar at the end of 1969
consisted in large mainly of a tentative case law data retrieval system. It
was a rather unsophisticated first attempt and it did not go very far
by way of incorporating solutions to the problems discussed in the
last section.

As designed, the system consists of approximately twenty programs
and subprograms. A "subprogram", it should be explained, is an
auxiliary program to the main program that uses it; it is called by
the main program to perform a specific task as an integral part of that
main program. The print-out for the programs amounted to fifty
pages. However there are about ten to fifteen pages to be added as
two of the programs were not ready for inclusion at the time the
research for the seminar had to be completed. The print-out consists
of the complete listing given by the computer (via the printer) of what
was on each of the cards that made up the FORTRAN IV source
program.

In writing the programs, comments were liberally used to explain
what the FORTRAN IV statements meant and for other purposes.
It was a simple matter to include comments in the source program
without interfering with its compilation. Each comment card has a
"C" in its first column, and the computer knows that when such cards
occur it is not to include the symbols they contain for compilation,
but only to include them in the print-out.

A. The Two Sub-systems

The Case Law Data Retrieval System has two sub-systems: the
Annotation Retrieval System, and the "KWIC" Case Retrieval
System.

In the case of the first, the Annotation Retrieval System, the inquirer
would specify a case whose annotations he wanted and the computer

The Law and Computers 27

would print out the following information for each case it found that
cited the given case:

1. The citation of the case that cited the specified case;
2. how the cited case was treated; e.g.. was it overruled, questioned,

approved, applied, etc.;
3. the page in the cited case which was quoted from or referred to

as being of particular interest;
4. the page(s) where the cited case was discussed in the citing case;
5. and lastly, approximately eight words1o about the particular

subject matter in reference to which the case was cited.
In the case of the secondsyb-system, the "KWIC" Case Retrieval

System, the inquirer would specify a few words embodying concepts
which he would expect to appear in any relevant case. Where all Of,

at least, most of the words specified were found in a particular context,
the computer will supply the following information:

1. The citation of the case in which the words specified appeared;
and,

2. a limited sampling of the context of that case.
The twenty programs and subprograms would be divided between

these two sub-systems, and some of them would serve in both as wrell.

B. The Setting-up of the Whole System

Once the programs are all ready, and the errors in them have been
eliminated, they are fed into the computer in the form of a deck of
cards. Approximately 2,000 cards were needed for the programs here.
When the cards for each program have been read in, the FORTRAN
IV source program on those cards is compiled into a machine language
program. By means of two cards following each program., the com­
puter is given an order to immediately store the program just compiled
into permanent storage on the disk. The programs remain there until
deleted by further instructions.

Each program in the system is referenced by a name. For example,
in the first program of the system to be stored on the disk, it is stated
that the program is to have the name 'MASTR'. The statement, or
instruction,

-NAME MASTR

makes this specification. The name that references a program is useful
because by simply naming the program in the "execution" statement
as follows,

//XEQ MASTR

the program can be summoned from the disk, executed, and be returned

10 "Word" is not used in the technical sense (see the discussion in Section 111), but
in the ordinary sense; namely, words of language.

28 Auckland University Law Review

to ,the disk when execution is complete. Thus with one card we can,
in effect, make the computer perform any operation ho,vever com­
plicated the program required for it may be.

There is a special- technique available that enabled all the individual
programs to be formed into a co-ordinated system; it also makes use
of the fact that programs can be referenced with names. Instructions
can be included in a program to the effect that, if a certain condition
is fulfilled, the computer is to cease execution of that program, summon
another program from the disk into core-storage, and commence its
execution. The other program is named in the calling program. This
is known as the "CALL LINK" statement, and the form of the state­
ment if it appeared in a program calling link to program 'CASES', for
example, would' be

CALL LINK (CASES)

c. Classification of the Programs

Each program (and subprogram) bas its own particular function to
perform, but nevertheless because of similarity of function they can
be" classified'underfour main headings:

1. The master-control program.
Its function is to control the whole system. It selects which of the

other programs are to be executed, and the order of their execution.
This program is called 'MASTR'. It has a subprogram called 'CLERK'
that it can call on to help with its task of selection.

2. The data-bank-creation programs.
Their function is to organise data into a suitably referenced form

so that it can be found later, and to store the referenced data into files
on the. disk. The "files" are the data banks and each entry into them
is called. a "record". These programs are called 'CASES, 'ANNOT',
and '~WIC1'.

3. The clerical programs.
There are four; they are called 'SORTi', 'SORT2', 'SORT3',.

'SAME'. The function of the first three is to organise the datain the
files into alphabetical or numerical order, depending on the type of
data in the file. The function of the fourth program is to check one of
tne ,.files for identical entries and eliminate them.

The writer did not have to develop the three sorting programs
mentioned above. A research graduate in physics allowed him to use
an extremely fast program he had developed himself for sorting the
records in a file on the disk. It can sort 1,000 records in fifteen minutes;
i.e. faster than one a second. All he needed to adapt his program were
the particulars about each file to be sorted. Another program or his
then used these particulars tQgenerate modified versions of his sorting

The Law and Computers 29

program. Three sort programs ,were generated in this way, since the
particulars for each of the three files to be sorted varied. The programs
generated were .punched out on to cards, ready for use by the computer.·

4. The data retrieval programs.
Their function is to retrieve data from the files (or data banks)

created by 'CASES', 'ANNOT' and 'KWICI'. They are called 'FIND'
and 'KWIC2'. The former retrieves data for the Annotation Retrieval
System, and the latter retrieves data for the 'KWIC' Case Retrieval
System. 'KWIC2' has yet to· be developed-it willp,robably require
difficult and complicated programming.

In addition to th~. programs mentioned above, there are nwnerous
subprograms which are called by them, and' therefore. fit into one or
other of the classifications above.

VIII. CONTROL OF THE WHOLE SYSTEM, AND ITS
, OPERATION'ILLUSTRATED

The whole Case. Law Data. Retrieval System' is controlled, as said
above, by the Master Controt program 'MASTR'. This programre­
ceives directions by the use of code cards. The code cards are read
into the computer as ordinary data cards, 'Yhich in fact they really
are; they supply data on the basis 'of which the comppter decides which
of the possible paths of operation in program 'MASTR' it will take.
Program 'MASTR' is supposed to read only code cards, and has
instructions to ignore everything on a card except what is punched in
columns 79-80 of the card. The code cards for program 'MASTR~

have'AA', 'BB', 'CC', 'DD', 'EE', or 'LS' punched in columns 79-80~

If a card with anything else in columns 79-80 is read, it is ignored
and the next card is read.

Further code cards are used to give directions on the path of opera­
tion. to be followed in programs. that 'MASTR' has brought into
execution; Some have the code itt columns 1-2 of the 'card. However,
since on every occasion that the system is used 'MASTR' is always
the first program to be executed, _one. of the six code cards that give
'MASTR' its directions must always be the first card in the deck of
data ·cards to be read into the computer. One. of these six code cards
must also occur as the next card to be read in, whenever program
'MASTR' is executed after another program has called link to it in'
the course ofthe system's operation. .

In Table 9, there isa complete listing under four headings of all
the code cards that were used to control the operation of the Case
Law Data Retrieval Systenl'. There is typical data included in~ the
table to illustrate the system's operation; it is derived from Curtis v.

30

INDEX Columns
1-2

Auckland University lAw Review

CARDS Columns
79-80

A.

1
2
3
4 (a) (i)

(ii)
(iii)

(b) (i)
(ii)
(iii)

(c) (i)
(ii)
(iii)

5
6 (a)

Code Cardsfor Data-Bank-Creation Program, and Typical
Data

AA
DB

CURTIS v. CHEM. CO./1951/1 K.D. 80S (C.A.)
L'ESTRANGE v. GRAUCOB /1934/ 2 K.B. 394
APPLIED 403, 807, 808
WRIITEN TERMS - SIGNED UNREAD ­
*INNOCENT MISREPR. - 810 RECISSION POSSe
OLLEY v. MARLBOROUGH /1949/1 K.B. 532
APPLIED 808
COMMON LAW LIABILITIES - REQUIREMENTS
·FOR EFFECTIVE EXEMPTION - NOTICE
REX v. KYLSANT /1932/1 K.B. 442
APPLIED 809
FRAUDULENT + INNOCENT MISREPR. COMPARED
*- VOID EXEMPTIONS - PRINTED FORM
YY
«CONTRACT» - b «NEGLIGENCE» - bDRESS
*LEFT FOR bb«CLEANING» - b«DAMAGE»
*-b «CONDIT
IONS»//ONbb «RECEPTb» «EXEMPTINGb»
*CLEANER FROM b «LIABILITYb»
·FOR DAMAGE/IHO
WEVER CAUSED - bRECEIPTb «SIGNED» bBY
·PLAINTIFFb- b«INNOCENT»/1
*«MISREPRESENTATIO
»NbBY SHOP ASSISTANT. b«EXEMPTIONbCLAUSE»
*bb«FAILS»

99
vv
Code Cards for the Clerical Programs

CC
SI
52
83
5M

Code Carda for Retrieval Programs, and Typical Request
Data

DD
L'ESTRANGE v. GRAUCOB /1934/ 2 K.B. 394

(A blank card would occur here as a code card)
BE

EXEMPTION CLAUSE, INNOCENT, MISREPRESENTATION,
RECEIPT.

D. Code Card to Terminate the Operation ofthe Whole System
1 ~

Table 9. Code cards and typical data for the Case Law Data Retrieval
System.

SYSTEM COMMENCES
OPERATION

SYSTEM CEASES
OPERATION)

Figure 6. The flow-chart for the Case Law Data Retrieval System,
showing the co-ordination of the programs, and method of control.

32 Auckland University Law Review

Chemical Dry Cleaning CO.,ll and is in the form or "format" it would
need be to meet the requirements of one of the data input programs.
Each Jine ,of the table represents one card; where an asterisk occurs
it is not a new card but merely a continuation from the preceding line.
The index is used to reference the cards for discussion purposes in the
text; the table is discussed in four subdivisions. It would be best to
imagine the table as a deck ~f d~ta cards abo~t to be fed into the
compl.\ter·.in'the order they are in. The 'b' written frequently in lines
6(a)-(d) is there to indicate a space where it is not obvious; 'b' equals
'blank', and does not appe~r on the actual cards. The double slashes
in 6(a)-(d) are.a code for the retrieval program 'KWIC2'.

Figure 6 preceding is a flow-chart showing how the programs in
the Case Law Data Retrieval System are co-ordinated, and how the
code cards control the operation of the system; this diagram, or
flow-chart, will help the reader to understand the following explanation.
All references in Figure 6, for example 'A(2)', 'C(5)', 'A(4)(a)-(c)',
'A(6)(a)-(d)', etc., are to the index in Table 9. The circles indicate
programs; the trapeziums indicate that a card appearing in Table 9
is being read; and the diamonds indicate that a card read in was a
code card and that a decision has to be made between two paths.

The following four subdivisions explain wha~ the programs do as
each of the cards in Table 9 is fed. into the computer. The explanation
follows the order of the cards in the table. The index in Table 9 has
been used to refer to the cards in the course of the discussion. 'For
example, 'A(l)' in "If A(l)......" refers to the first card in Table 9, and
"If A(l).~...." therefore means: "If the card fed into the computer has
'AA' .in columns.79-80 of the card, then". "If A(l)" is used as a
useful abbreviation.

A. Code Cards for Data-Bank-Creation Programs, and Typical Data

Assuming that the system has been called into operation by the
instruction

//XEQ MASTR

and that. the cards in Table 9 are now being fed into the computer,
then:

IfA(l),then 'MASTR' is directed to set upa special file,.File 2, on the
disk containing the number of records, and the number of sorted
records in each of the other files. After the first occasion the
system is operated, the use of this card is never repeated.

If A(2), then 'MASTR' calls link to 'CASES'.
'CASES' reads in card A(3) which contains the citation of a case

The Lalv and Computers 33

to be digested. The citation is stored in File 1 on the disk. 'CASES'
then automatically calls link to 'ANNOT'.

'ANNOT' reads in cards A(4)(a)(i)-(iii), which is the 'citation of a
case cited in the case on card A(3) and other data. 12 All of this is
stored in File 3. The next card is not A(5), therefore the same process
is repeated for cards A(4)(b)(i)-(iii), and ditto for cards A(4)(c)(i)-(iii).
The citation in each of these cases is also stored in File 1.

If A(5), then 'ANNOT' is directed to call link to 'KWICl'.
'KWICl' reads in cards A(6)(a)-(d) \vhich is a paragraph sum...

marising the subject matter of the case on card A(3). 'KWICl' puts
the words inside the brackets into File 5, which contains key-words
that reference the paragraph (and hence the case) they were extracted
from. 'KWICl' then eliminates the brackets and stores the l;vhole
paragraph into File 4, which contains only paragraphs.

[At present 'KWICl' is unsatisfactory because obviously the 'pro'cess
of preparing the paragraph into the form it is here on cards'A(6)(a)-(d)
is very laborious and slow: the case has to be summarised and the key
words have to be bracketed manually to suit 'KWICI' as it is pro­
grammed now. Also, with a summary, there is always inform4;l.tion
lost; and it is fairly subjective. The computer would be much faster if
'it were doing all the work. But on what criteria it is to choose the key
words. Again, how would it summarise a case and at the same' time
minimise information loss. If the entire case were to be stored as 'it is
in data banks, they would have to be extremely vast and therefore the
system would be very expensive. Moreover it would merely be dup­
licating the Law Reports in the library. Such then are the problems
that must be overcome to improve 'KWICI'.]

If A(7), then'KWICl' is directed that it 'has finished~ reading'in the
cards containing the paragraph on cards A6(a)-(d). 'This card is
needed because the paragraphs are of variable length, and the
computer keeps -on reading in the cards for the paragraph until
card A(7) is encountered.

If A(8), then 'K\VICl' is directed that there are no more p3:ragraphs
s'ummarising the case on card A(3) to be read in, and that it is to
call link to 'MASTR'.

[The system allows for the summary of a case to consist of more
than one paragraph; each paragraph would deal with different-aspects
of the case.]

'MASTR' then reads the next card, which must be 'one of its six code

12 See the Discussion of the Annotation Retrieval System in Section VIlA above.
The particulars of what data the computer would need when executing 'ANNOT'
are given there.

34 A.uckland University Law Review

cards. For the purposes of this explanation, it is assumed that the next
card is not the code card that direc:ts 'MASTR' to cease execution and
return to the disk. So, to continue::

B. Code Cards for the Clerical Programs

IfB(l), then 'MASTR' is instructed to call on its auxiliary, subprogram
'CLERK', to perform the selection of the next program to be
executed.

Subprogram 'CLERK' reads the next card, which must be one of the
code cards with 'SI', 'S2', 'S3', 'SM' in columns 79-80.

If B(2), then subprogram 'CLERK' calls link to 'SORTI '.
'SORTI' sorts the records in File I on the disk. It calls link back to

'MASTR' when it has finished sorting. Therefore. card B(I) must
preface any occurrence of cards B(3), B(4), or B(5).

If B(3), then 'CLERK' calls link to 'SORT2'.
'SORT2' sorts File 3 and also calls link back to 'MASTR' when

it has finished sorting.

If B(4), then 'CLERK' calls link to 'SORT 3'.
'SORT3' sorts File 5, which contains key-words, into alphabetical

order. It also calls link back to 'MASTR' when it has finished sorting.

If B(5), then 'CLERK' calls link to 'SAME'.
'SAME' eliminates identical entries that could occur in File I for

this reason: the case on card A(3) would be stored in File 1 by 'CASES',
and when it occurred (if ever) as a cited case in a later case 'ANNOT'
would store its citation in File 1 too. Hence there could be two entries
of the same citation in File 1. 'SAME' calls link back to 'MASTR'
when it has finished checking File .1.

Again the next card in the deck of cards being fed into the compute
must be one of the six code cards for program 'MASTR', So, to
continue:

c. Code Cards for Retrieval Programs, and .Typical Request Data

If C(l), then 'MASTR' is directed to call link to 'FIND'.
'FIND' will read from card C(2) the citation of the case for which

it has to find annotations. 'FIND' then searches File 3 on the disk for
entries where the case on card C(2) is given as having been cited.
However, in order to save storage space in File 3, instead of the full
citation of citing cases being contained therein, only a key referencing
the relevant full citation in File 1 is given. Therefore it is necessary for
'FIND' to search File 1 as well for the full citation of a citing case

The Law and Computers 35

whose key it found in File 3. 'FIND' then writes out on the printer all
the annotations it found for the case on card C(2).

IfC(3), then 'FIND' is directed that for the present there are no more
cases for which annotations have to be found, and that it has to
call link to 'MASTR'.

If C(4), then 'MASTR' calls link to 'KWIC2'.
'KWIC2' reads card C(5) which contains words all or some of

which must occur in any paragraph the computer prints out as being
relevant to the inquirer's problem. 'KWIC2' first searches File 5 to
see if the words specified on card C(5) occur there as key..;words.
After each key-word in File 5 there is a key referencing the paragraph
that the key..;word came from. 'KWIC2' compares the keys after the
words given on card C(5) if they occur in File 5. Whenever it finds that
the key after all, or most, of the key..words is the same, it then knows
that the paragraph that the key..words came from is one that should be
printed out. Hence 'FIND' would print out the paragraph (in its
edited form) that was fed into the computer on cards A(6)(1)-(d) if
the key..words given by an inquirer were those on card C(5). 'FIND'
would also supply the citation of the case from which the paragraph
came. When all the paragraphs that have been found to be relevant by
this gormal 13 test have been printed out, 'FIND' calls link back to
'MASTR'.

D. Code Card to Terminate the Operation of the Whole System

This code card would always be the last card to occur in any deck
of data cards being fed into the computer. But to continue with the
explanation of the way the code cards control the system:

If D(l), then 'MASTR' is instructed that it must cease execution and
return to storage on the disk.

Thus the whole Case Law Data Retrieval System will lie dormant on
the disk, ready to come into operation whenever the instruction card

I/XEQ MASTR

is again fed into the computer.

Table 10 following shows how the information retrieved by "FIND"
would appear in a typical print..out from the computer, assuming that
'FIND' had been searching for the annotations of L'Estrange v.
Graucob. 14 Whatever occurs to the left of the double dashes in Table 10
is standard for every print..out from the Annotation Retrieval System.

13 The actual test for relevance will be when the inquirer reads the paragraphs
printed out by the computer to see if they have any relevance to his problem.

14 [1934] 2 K.B. 394.

36 Auckland University Law Review

THE CITED CASE - - L'ESTRANGE v. GRAUCOB/1934/2 K.B. 394
PARTICULAR PAGE·CITED (IF ANY) - - 403

THE CITING CASE - - CURTIS v. CHEM CO./1951/1 K.B. 805
(C.A.)

THE CITED CASE WAS - - APPLIED
THE CITED CASE IS FOUND AT PAGE(S) - - 807,808

BRIEF NOTE TO INDICATE SUBJECT MATTER --
WRITTEN TERMS - SIGNED UNREAD - INNOCENT
MISREPR. - 810 RECISSION POSSe

Table 10. Typical print-out from program 'FIND'.

Table 11 following shows how a typical print-out from program
'KWIC2' would appear, assuming that the paragraph summarising
Curtis v. Chemical Dry-cleaning Co. II had been retrieved as being
relevant subsequent to an inquiry specifying the words:

EXEMPTION CLAUSE, INNOCENT, MISREPRESENTATION,
RECEIPT.

CONTRACT - NEGLIGENCE - DRESS LEFT FOR CLEANING
- DAMAGE - CONDITIONS ON RECEIPT EXEMPTING
CLEANERS FROM LIABILITY FOR DAMAGE HOWEVER
CAUSED - RECEIPT SIGNED BY PLAINTIFF - INNOCENT
MISREPRESENTATION BY SHOP ASSISTANT. EXEMPTION
CLAUSE FAILS.

- - CURTIS v. CREM. CO.j1951jl K.B. 805 (C.A.).

Table 11. Typical print-out from program 'KWIC2'.

