That in use for the transmission of the urgency signal or emergency message; all assistance should be given, if required, in the clearance of the emergency message to the addressee, for example, by retransmission.

7. Safety—(1) When a safety message is to be transmitted, the radio officer should—

(a) Send the safety signal towards the end of the first available silence period and call on one or more of the international distress frequencies (500 kHz, 2182 kHz, and 156.8 MHz, where applicable) or on any other frequency which may be used in case of distress;

(b) Immediately after the end of the silence period send the safety message which follows the call, on a working frequency, making a suitable announcement to this effect at the end of the call; outside regions of heavy traffic short safety messages may be sent exceptionally on the frequency 500 kHz;

(c) Transmit safety calls and messages which contain important meteorological and navigational warnings, as soon as possible and repeat them at the end of the first silence period that follows.

(2) On hearing the safety signal, the radio officer should—

(a) Not interfere with the signal or message;

(b) Copy the message and pass it to the bridge;

(c) Give every assistance in disseminating, as necessary, such messages when addressed to “all ships” and re-transmit to the addressee messages of a more limited nature, if so requested.

Other Duties

8. Log-keeping—(1) The radio log should be kept in compliance with the requirements of these performance schedules.

(2) The radio log should be kept in the radio room and should be available for inspection by authorised officials; the times of all entries should be recorded in UTC.

(3) The radio log should at all times be available for inspection by the master, and the radio officer should call the master’s attention to any entry important to safety.

9. Essential tests—While the ship is at sea, tests should be made by the radio officer. In addition, the following should be carried out to facilitate early detection of developing faults:

(a) At least once a week check the automatic keying device for signal-formation and timing;

(b) At regular intervals check all metered test points in the radiocommunication equipments and record abnormalities;

(c) When possible test the portable and fixed radio apparatus in a survival craft afloat; in any event, every 3 months test the portable and fixed radio apparatus in a survival craft on board ship; when the tests are undertaken with the antenna rigged, efforts should be made to establish contact with other ships or coast stations provided no interference is caused to other transmissions; when non-rechargeable batteries are used in the survival craft radio equipment, they should be replaced at the intervals recommended by the manufacturers or earlier if performance on test is degraded.

(d) At intervals, when within sight of a radio beacon, in cooperation with a navigating officer, check bearings should be taken to verify the accuracy or the direction finder calibration curve on as many ship’s headings as possible; the results should be recorded and reported to the master; possible shipboard causes of errors, including alteration to wire rigging and unauthorised antennae, should be sought and reported to the master.

10. Demonstration of portable radio apparatus for survival craft—Whenever possible, the operation of the portable radio apparatus for survival craft should be demonstrated to new crew members in order to familiarise them in its use. When the apparatus is tested in survival craft, the rigging and operation of it should be demonstrated to as many crew members as possible.

11. Demonstration of reserve radiotelegraph equipment—Where an instruction chart and related numbered indicators on the reserve Radiotelegraph equipment, including automatic keying devices, are required, suitable persons designated by the master to use such equipment in an emergency when the radio officer is incapacitated for any reason should be given demonstrations in such procedure at appropriate intervals.

12. Maintenance—While the ship is at sea or in port, the radio officer should ensure that all equipment in their charge is effectively maintained. To this end, the officer should follow the procedures in clauses 15 to 18 of this Schedule.

13. Records—A separate “Equipment Maintenance and Repair Record” should be kept for logging all maintenance undertaken, as well as all observed abnormalities, for future reference and correlation with fault occurrence. It should be indexed by major equipment type and be retained abroad the vessel. The record should include details of—

(a) Date and time of preventive or corrective maintenance procedures, including total time out of service;

(b) Equipment involved;

(c) Condition of equipment at outset of procedure;

(d) Abnormalities noted, if any;

(e) Any preventive maintenance steps taken (where no abnormality is noted) and corrective maintenance procedures undertaken where any abnormality is found:

(f) Components repaired or adjusted;

(g) Condition of the equipment after steps taken under paragraphs (e) and (f) of this clause are completed;

(h) Spare parts consumed.

14. Additional provisions for ships carrying more than one radio officer—(1) When taking over the radio watch, the relieving radio officer should arrive in the radio room in sufficient time to—

(a) Check whether distress, urgency, or safety traffic is in progress;

(b) Check that the updated ship’s position is available and displayed at the usual place;

(c) Inquire as to special orders or requests, including messages expected and unusual weather reports requested;

(d) Sign on in the radio log as soon as the outgoing radio officer has completed entries and signed off.

(2) When handing over the radio watch, the radio officer on watch should—

(a) Pass on any special orders or requests to their relief and inform the relief of any abnormal propagation conditions or other items of direct concern;

(b) Complete the radio log and sign off.

Guidelines for an Effective Preventive Maintenance Programme

15. Objectives—(1) Preventive maintenance is designed to—

(a) Keep the equipment operating for the longest possible period of time without breakdown;

(b) Maintain it at optimum operating efficiency;

(c) Protect it from detrimental effects of vibration, dirt, dust, moisture, corrosion, and temperature;

(d) Prolong its useful life.

(2) It must be recognised that in many types of equipment and devices, modern manufacturing techniques are producing high density electronic packages of high integrity for which the advice of the equipment manufacturers should be taken into account in incorporating individual equipment into regular preventive maintenance schedules.